The descriptions of the models \mathcal{N}_{15}, \mathcal{N}_{17}, and $\mathcal{N}_{36}(\beta)$ have been revised. The revisions are described below:

1. In the description of \mathcal{N}_{15} replace
\mathcal{N}_{15}: Brunner/Howard Model I. $A = \{a_{i,\alpha} : i \in \omega \land \alpha \in \omega_1\}$. Let Γ be the group of all even permutations on ω. $\mathcal{G} = \{g : (\forall \alpha \in \omega_1) (\exists \gamma \in \Gamma)(\forall i \in \omega) g(a_{i,\alpha}) = a_{\gamma(i),\alpha}\}$. S is the set of all countable subsets of A.

with

\mathcal{N}_{15}: Brunner/Howard Model I. $A = \{a_{i,\alpha} : i \in \omega \land \alpha \in \omega_1\}$. Let Γ be the group of all even permutations on ω. $\mathcal{G} = \{g : (\forall \alpha \in \omega_1) (\exists \gamma \in \Gamma)(\forall i \in \omega) g(a_{i,\alpha}) = a_{\gamma(i),\alpha}\}$. S is the set of all countable subsets of A.

2. In the description of \mathcal{N}_{17} replace the entire description of the model with
\mathcal{N}_{17}: Brunner/Howard Model II. $A = \{a_{\alpha,i} : \alpha \in \omega_1 \land i \in \omega\}$. Let Γ be the group of all permutations on ω_1. $\mathcal{G} = \{g : (\forall i \in \omega)(\exists \gamma \in \Gamma)(\forall \alpha \in \omega_1) g(a_{\alpha,i}) = a_{\gamma(\alpha),i}\}$ and for all but finitely many $\alpha \in \omega_1$, $(\forall i \in \omega) (g(a_{i,\alpha}) = a_{i,\alpha}) \}$. S is the set of all countable subsets of A. This is the model of proposition 3.4 in Brunner/Howard [1992].

3. In the description of $\mathcal{N}_{36}(\beta)$ replace
$\mathcal{N}_{36}(\beta)$: Brunner/Howard Model III. This model is a modification of \mathcal{N}_{15}. $A = \{a_{i,\alpha} : i \in \omega \land \alpha \in \omega_{\beta+1}\}$. Let Γ be the group of all permutations on ω. $\mathcal{G} = \{g : (\exists \gamma \in \Gamma)(\forall i \in \omega)(\forall \alpha \in \omega_{\beta+1}) g(a_{i,\alpha}) = a_{\gamma(i),\alpha}\}$ is the set of all subsets of A of cardinality at most \aleph_β.

with

$\mathcal{N}_{36}(\beta)$: Brunner/Howard Model III. This model is a modification of \mathcal{N}_{15}. $A = \{a_{i,\alpha} : i \in \omega \land \alpha \in \omega_{\beta+1}\}$. Let Γ be the group of all permutations on ω. $\mathcal{G} = \{g : (\forall \alpha \in \omega_{\beta+1})(\exists \gamma \in \Gamma)(\forall i \in \omega) g(a_{i,\alpha}) = a_{\gamma(i),\alpha}\}$. S is the set of all subsets of A of cardinality at most \aleph_β. This is the model of proposition 3.3 in Brunner/Howard [1992].

4. In the last sentence of the description of $\mathcal{N}_{36}(\beta)$ replace the word “if” with the word “is”.

References Brunner/Howard [1992], notes 2(3, 5, and 6), 18 and 120(30 49, 55, and 56).