In NOTE 49:
The definition of Tr should be
\[\forall x \exists u \exists f \text{ such that } u \text{ is transitive and } f \text{ is a function from } x \text{ one to one and onto } u. \]
Delete “(form 174)”. (The statement TR” is not form 174.)

In NOTE 94:
The relationship between \(\Delta_3 \)-finite and \(\Gamma_3 \)-finite was discovered by Omar de la Cruz, neither implies the other. In the model \(N3 \), \(A \), the set of atoms, is not \(\Delta_3 \)-finite, but since \(\mathcal{P}(A) \) is Dedekind finite, \(A \) is \(\Gamma_3 \)-finite. In \(N1 \), let \(X \) be the set of all finite subsets of \(A \). \(X \) is not \(\Gamma_3 \)-finite because \(\mathcal{P}(X) \) is Dedekind infinite. However, \(X \) is \(\Delta_3 \)-finite because it has no infinite linearly ordered set.

Suppose \(X \) has an infinite linearly ordered set \(L \) and suppose \(E \) is a support for \(L \) and its linear ordering \(R \). There must be an \(n \in \omega \) such that \(L' = \{ x \in L : |x| = n \} \) is infinite. Otherwise, we can well order \(L \) by

\[x < y \text{ iff } |x| < |y|, \text{ or } |x| = |y| \text{ and } xRy. \]

Since \(E \) has only finitely many subsets there are elements \(u \) and \(v \) in \(L' \) such that \(u \cap E = v \cap E \). It is easy to see that there is a permutation \(\sigma \in G \) such that \(\sigma(u) = v \) and \(\sigma(v) = u \). This contradicts the assumption that \(E \) is a support of the linear ordering \(R \).