Additions to Part IV: Notes

In the table of contents for the notes add:

151. Definitions for forms [14 DA]–[14 DF]

New note:

NOTE 151

In this note we give the definition of a lattice ordered group and related notions for forms [14 DA]– [14 DF].

Definition.

- 1. If (G, +) is a group and \leq is a partial ordering on G compatible with + such that each pair of elements in G have a least upper bound and a greatest lower bound, then (G, +) is called a *lattice ordered group* or an *l-group*. (The partial order \leq is *compatible* with + if for all a, b, c, and d in G, if $a \leq b$, and $c \leq d$, then $a + c \leq b + d$.
- 2. If (G, +) is an *l*-group, *G* is called *archimedian* if for all pairs of strictly positive elements $g, h \in G$, there is an $n \in \mathbb{N}$ such that $g^n \leq h$ does not hold. (An element $g \in G$ is *positive* if $e \leq g$ and *strictly positive* if $e \leq g$, where *e* is the unit.)
- 3. If (G, +) is an *l*-group, G is called *hyperarchimedian* if all its homomorphic images are archimedian.
- 4. An *l*-group is called *simple* if it does not contain any proper *l*-ideals.
- 5. Two elements g and h in an l-group G are called *orthogonal* if the meet of their absolute values is e, the unit. (The *absolute value* of an element $g \in G$ is g if $e \leq g$ and -g otherwise, where -g is the inverse of g.)
- 6. A weak unit in an l-group is a positive element u which is orthogonal only to e.
- 7. A topological space is called *Boolean* if it is compact, Hausdorf, and the family of compact open subsets form a base for the topology.
- 8. A is called a Boolean product of the family $\mathcal{A} = \{A_i : i \in I\}$ if
 - (i) A is a subdirect product of \mathcal{A} .
 - (ii) I admits a Boolean space topology such that
 - (a) For any atomic formula $\phi(v_1, v_2, \dots, v_n)$ and for all $a_1, a_2, \dots, a_n \in A$, the subset

$$\{i \in I : A_i \models \phi(a_1(i), a_2(i), \cdots, a_n(i))\}$$

is clopen in I.

(b) For all $a, b \in A$ and for all clopen $J \subseteq I$, the element $(a \upharpoonright J) \cup (b \upharpoonright (I \setminus J))$ belongs to A.

In the table of contents for the notes add:

NOTE 152

A proof that form 409 implies form 62. Let X be a set of disjoint finite sets and construct the graph (G, Γ) where $G = \bigcup X$ and for $t \in G$, if $t \in y \in X$ then $\Gamma(t) = y \setminus \{t\}$. (So if $y \in X$ there is an edge from every element of y to every other element of y.) Let $K = \{0, 1\}$ and define the function $T : \mathcal{P}(K) \to \mathcal{P}(K)$ by $T(\{0\}) = \{1\}, T(\{1\}) = \{0\}, T(\emptyset) = K$ and T(K) = K. The hypotheses of 409 are satisfied for (G, Γ) and K. Here is the argument:

If A is a finite subgraph of G (I.e., $A \subseteq G$), the A can be written as the disjoint union $A = (A \cap y_1) \cup \cdots (A \cap y_n)$ where $y_i \in X$ and $y_i \cap A \neq \emptyset$, for $i = 1, \ldots, n$. Choose one element t_i in each of the sets $A \cap y_i$ for $i = 1, \ldots, n$ and define $\phi_A : A \to K$ by $\phi_A(t_i) = 0$ for $i = 1, \ldots, n$ and $\phi_A(t) = 1$ for other elements $t \in A$. For the proof that $\phi_A(t) \in T(\phi_A(\Gamma_A(t)))$ for all $t \in A$, (Γ_A is Γ restricted to A.) assume that $t \in A \cap y_i$ and consider two cases

Case 1. $|A \cap y_1| = 1$. In this case $t = t_i$ so $\phi_A(t) = \phi_A(t_i) = 0$ Also in this case $\Gamma_A(t) = \emptyset$ so $T(\phi_A(\Gamma_A(t))) = T(\phi_A(\emptyset)) = T(\emptyset) = K = \{0, 1\}$ so $\phi_A(t) \in T(\phi_A(\Gamma_A(t)))$.

Case 2. $|A \cap y_i| > 1$. In this case let s be an element of $A \cap y_i$ different from t_i . If $t = t_i$ then $s \in \Gamma_A(t_i) = \Gamma_A(t)$ so $\phi_A(s) \in \phi_A(\Gamma_A(t))$ so $1 \in \phi_A(\Gamma_A(t))$. By the definition of T it follows that $0 \in T(\phi_A(\Gamma_A(t)))$. But $\phi_A(t) = \phi_A(t_i) = 0$. On the other hand if $t \neq t_i$ then $t_i \in \Gamma_A(t)$ so $\phi_A(t_i) = 0 \in \phi_A(\Gamma_A(t))$. Using the definition of T again, this means that $1 \in T(\phi_A(\Gamma_A(t)))$. But $\phi_A(t) = 1$.

Therefore by 409, there is a function $\phi_A : G \to K$ such that for all $t \in G$, $\phi(t) \in T(\phi(\Gamma(t)))$. We now argue that for each $y \in X$, ϕ restricted to y cannot be constant. (By contradiction.) Assume $\forall t \in y$, $\phi(t) = 0$. Then for any $t \in y$, $T(\phi(\Gamma(t))) = T(\{0\}) = \{1\}$. But then $\phi(t) = 0 \notin T(\phi(\Gamma(t)))$. A similar argument shows that $\phi(t) = 1$ for all $t \in y$ is impossible. We can now get a Kinna-Wagner function for X by defining $f(y) = \{t \in y : \phi(t) = 0\}$ for each $y \in X$.