Additions to Part IV: Notes

Add the following as a new paragraph at the end of note 40:

The following are definitions for [94 S]. Suppose \(x \in \mathbb{R} \) and \(X \subseteq \mathbb{R} \).

(a) \(x \) is called an accumulation point of \(X \) if every open neighborhood of \(x \) contains a point in \(X - \{x\} \).

(b) \(x \) is called a cluster point of \(X \) if every open neighborhood of \(x \) contains an infinite number of points in \(X \).

(c) \(x \) is called a limit point of \(X \) if there is a sequence \(\{x_n : n \in \omega\} \subseteq X \) such that for every open neighborhood \(N_x \) of \(x \), there is real number \(M > 0 \) such that for all \(n > M, x_n \in N_x \).

In any \(T_1 \) space, \((\mathbb{R} \text{ with the order topology is } T_1) \), a point is a cluster point if and only if it is an accumulation point. (Clearly, a cluster point is an accumulation point. Suppose \(x \) is an accumulation point of \(X \) that is not a cluster point. Suppose \(N_x \) is a neighborhood of \(x \) that only contains a finite number of elements of \(X, x_1, x_2, \ldots, x_n \). Since \(X \) is \(T_1 \), using induction, we can find a neighborhood \(M \) of \(x \) that does not intersect \(\{x_1, x_2, \ldots, x_n\} \). Then \(N_x \cap M \) is a neighborhood of \(x \) that does not contain any points of \(X \) different from \(x \). This contradicts the fact that \(x \) is an accumulation point.)